Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing.

نویسندگان

  • Li Fan
  • Leo T Varghese
  • Yi Xuan
  • Jian Wang
  • Ben Niu
  • Minghao Qi
چکیده

We demonstrate a process to fabricate silicon photonic devices directly on a plastic film which is both flexible and transparent. This process allows the integration of complex structures on plastic films without the need of transferring from another substrate. Waveguides, grating couplers, and microring resonators are fabricated and optically characterized. An optical strain sensor is shown as an application using 5 µm-radius microring resonators on the flexible substrate. When strain is applied, resonance wavelength shifts of the microring resonators are observed. Contributions of different effects are analyzed and evaluated. Finally, we measure the influence of residual strain and confirm the material undergoes elastic deformation within the applied strain range.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Editorial: Photonic Integration and Photonics–Electronics Convergence on Silicon Platform

Citation: Yamada K (2015) Editorial: Photonic integration and photonics–electronics convergence on silicon platform. Silicon-based photonics technology, which is based on the same paradigm of silicon (Si) electronics technology, promises to provide us with a compact photonic integration platform with high integration density, mass manufacturing, and excellent cost performance. This technology h...

متن کامل

Porous Silicon Integrated Photonic Devices for Biochemical Optical Sensing

In the last few years, great efforts have been spent in the development of integrated microsystems, devices of few square centimeters in size including microsensors, microfluidic components, reaction chambers, detectors, and so on. More than a simple ensemble of devices, this is a new research field that combines the properties and characteristics of different materials to find innovative and a...

متن کامل

Strain-tunable Photonic Band Gap Microcavity Waveguides in Silicon at 1.55 μm

The majority of photonic crystals developed till-date are not dynamically tunable, especially in silicon-based structures. Dynamic tunability is required not only for reconfiguration of the optical characteristics based on user-demand, but also for compensation against external disturbances and relaxation of tight device fabrication tolerances. Recent developments in photonic crystals have sugg...

متن کامل

Flexible and tunable silicon photonic circuits on plastic substrates

Flexible microelectronics has shown tremendous promise in a broad spectrum of applications, especially those that cannot be addressed by conventional microelectronics in rigid materials and constructions. These unconventional yet important applications range from flexible consumer electronics to conformal sensor arrays and biomedical devices. A recent paradigm shift in implementing flexible ele...

متن کامل

Fabrication of functional nanowire devices on unconventional substrates using strain-release assembly.

We report three representative nanowire (NW) devices for applications in stretchable electronics, strain sensing, and optical sensing. Fabrication of such devices is based on a recently developed strain-release assembly method. NWs are first aligned transversely on an elastomeric substrate using the strain-release assembly. Constant resistance is achieved in silicon (Si) NW devices stretched up...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 20 18  شماره 

صفحات  -

تاریخ انتشار 2012